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Abltract
The Box-Jenkins technique is a popular non-structural approach of analysing

tile series data. Box and Tiao(1975) adopted the technique in analysing the
structural change in the series lotivated by SOI~ intervenin~ factors. In this
paper, we introduce the seliparaletric lodel and discuss how this can be used in
the analysis of tile series. The data on peso-dollar exchange rate is used to
illustrate the proposed lodel.
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1. INTRODUCTION

The term structriral change brings to mind two notions in
economics. It can be interpreted in either the temporal or
nontemporal context. In the temporal context, the "change"
is brought about by altering the environment where the
relationship holds. In such, time is usually considered as
one of the independent variables. An example is the peso­
dollar exchange rate. Various political and economic
phenomena surely affect its rise-and-fall.

In the non-temporal context, the "change" is brought
about when an independent variable reaches a specified level.
An example for this is the relationship between yield of palay
and the amount of rainfall. The' occurence of drought as
indicated by a very low rainfall volume results in a low yield
of palay. As rainfall increases, the yield would also
increase until a time when a very high volume of rainfall



associated with natural disasters such as flood
existing' crops including palay. Consequently,
reverse the pattern of the rel~tionship between
and rainfall.

will damage
this would
palay yield
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In this paper, we consider only the structural change in
the temporal context. The "alteration in the. environment"
(which induces change) is called intervention. The
intervention is expected to produce an instantaneous and
continuing effect to the system until a new intervention
occurs.

Box and Tiao(1975) used the Autoregressive Moving
Average(ARMA) model(s) together with some dum~y variables in
the analysis of the effects of some intervention in the time
series. Poirier(1973) used cubic splines to test for the
significance of a structural change. In both approaches, time
is the only independent variable incorporated in the model.

The semiparametric model introduced in the next section
is proposed to solve the same proble~. One of the advantages
of this is that it can accomodate other independent variables
aside from time.

Thus the technique is formulated in a broader perpective
than the previously mentioned techniques.

2. THE SB~IPARAKETRIC KODEL

Given n observations on the dependent variable y and on
the (p + 1 ) independent variables Xl, X2, ... , Xp, t. A
routinary problem in model-building is to determine and
estimate the structure which relates the dependent variable to
the independent variables. The simplest solution is to assume
that y linearly depends on Xl, X2, ... ,Xp, t. However, in
some cases, this assumption would not give good fit. Thus, an
~lternative structure is desired~

Suppose that we are willing to keep the linear functional
relationship between y and Xl, X2, ... ,Xp. On the otherhand,
we do not want to take ~he risk of commiting on a functional
form of the dependence of y on t. Consequently, we should
resolve for a nonparametric form for the dependence of y on t.
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The model can then be written as:

,
= x1.l3+f(ti)+Ei, i=l, 2, ... ,n (1)

E(Ei)=O, V(Ei)= 0 2
, i=1,2, ... ,n

E(EiEj) = 0 i=j = 1,2, ... n

Xi. ~s the vector of independent variables

13 is the vector of unknown parameters

f is an unknown function that belongs to the class
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(2)

W where
2

(2) (1)

W = {f: f,t are

•

absolutely continuous and f is
square integrable.}

t is a variable in which y depends through an unknown
function.

Model (1) in a more compact form becomes

Y = XI3 + F(t) + e (2)

•

•

where Y = [ Y1, Y2, ..... , ':In ]

X = I x r , X2, ...... , Xn ]

F( t) = [ f(t1), f(t2), ...... , f( tn) ]
Remark: In model (2)) if ~

nonparametric model while if f is
reduces to a parametric model.
model is applied to model (2) .

= OJ it reduces to the
equal to a constant, ~hen it
Thus the term semiparametric

"~v,
!



'The problem is now to estimate the vector of parameters 6
and the. unknown function f Nevertheless, situation arise
when not all values of f in the entire range of t are desired.
In this case, the estimation procedure can be simplified if
the function f is discretized and thus reduce the

J

nonpara~etric f into a parametric function~pecified as
follows:

, ,
Suppose further that the points to,t~, ... ,ts (s <n -p) are
known .'

42 •

[
tj -1 +

t
j] •

Define 5j = f J = 1,2, ... " s
.2

Let

I1(t1) 12(t1) IS(t1)

I1(t2) 12(t2) Is(t2)

let) =

[~
if tj -1 s ti < tj

Ij(ti) =
otherwise

a = ( 51, 52, ... , 5s)

Substitution of a in place of F in model (2) results in

y = X~ + I( t) (. + E (3)

The problem of estimating 5 and the nonparametric function f
thus reduces to est Ln.a t Lng ~ and a

1
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The obj ect i ve f un c.t ion used is
n

II Y - X~ - I ( t) a II

+ KII va II, where II'I! is t he Euclidean norm. (4)

•
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Remark: The quantity (4) 15 called the penalized least
squares.criterion.

The matrix VCS-2 XS) in the second term of (4) is the
second differenc~ng operator with the following elements

1
1 = .1

(qi+1 - qi)(ri+1 - ri)
1 1

• Vij =
(gt+;2"·Q\·. 1)( ["1+1-1'1)

1

j::i+l

o otherwise

•

t1-1 + ti
where qi =

2

qi + gi+1
ri =

2

1 = 1,2, ... ,3

i = 1,2, ... ,5-1

The procedure and some results given in this section were
based on Engle, Granger, Rice and Weiss (1986).

THEOREM 1 Given the model Y = Ha+E
, "

where H = (X,I(t», a = (~, a )

U(S-2)x(~+a) = ( 0 , v ).

(5)

,
, ]-1 H Y

+K U U -
nn

,
H H

~=[-Then•
minimizes the penalized least squares criterion given in (4).

Remark: Since we have linear functions
norms that appeared in (4), theorem
applying simple calculus as in ordinary
also be shown (Barrios, 1990) that 8 is
of 8 under mild conditions .

as argument in the tW?
1 can be proven by
least squares. It can
a consistent estimator

•
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THEOREM 3 (Distribution ot 9)

2
Suppose E - N(O. ae!).Then

2

9 - N(~, ae ~)

•

, ,

[H H'r H H
where ~ = - + K U U 9

n n

[
H'H

+ K U'UJ-l]
H'H H'i-!

+ K U'U ]-1.. •
~ = ~[ (6)

n n

The proof is straightfor~ard from observing that 9 is a linear
combination of Y which is normally distribu£ed with mean He
and variance aeI .

The optimal value of the
obtained both graphically and
purpose; we will assume that
vva i lab Le .

smoothing parameter K can be
analytic~lly. However, for our
a reasonable value of K is

The simultaneous estimation procedure we have just
discussed requires the. definition of matrices of large.
dimensions which obviously complicates computation of the
estimates. The cummulative ~rror in inverting -matrices is
,proportional to the s~ze of the matrix. 'Thus, inversion of
larger matrices would incur larger error than smalt matrices.
Furthermore, the'method requires another objective function in
the determinatioti of the_smoothing parameter~In this
section; we discuss the method which minimiz~s the objecti~w

f un c t i.on (4) in three stages . This method provides .an
outright· estimate for K. Though fhe method we will dis6us~
next would require matrices with smaller dimension, it can not
be used if all the independent variables ar~ categorical.

•

Denote the ~bjective function (4) by Q(~, 6,K),

1 2 2

Q([3,o,K) = \lY-'X~-I(t)611 + KII V6 11
n

1. e. •

•
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The steps in
as follows:

obtaining estimates of ~p 5 and K are ou~linea
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i) Differentiate Q(~,5,K) ~ith respect to ~

Q(~,a,K)

and equate, to OJ i.e. = O. (10)

•

Denote by ~ (5, ) the solution of (10). Note that this is
a function· of 5 and K.

ii) Substitute ~(5JK) in Q(~,5,~), denoted by Q(~,5,K)

which isa function of 5 and K. Then differentiate Q
with respect for'5 and equate to 0 , we have

Q(~,a,K)

5
= 0 (11)

Denote by 5(K) the solution of (11).

•

•

•

iii) Substitute 5() in Q(~,5,K) denoted by' Q(13,5, ) a
function of K alone. Then differentiatp. Q with respect

to K and solve for K. Denote the solution by K .

T.H.E.Q.REIL.~..•..

, -1 , , -1

Define P = I - X(X X) X , A = I (t)PI(t) (V V)

1 . , , ·-1 , -J. ,
Cl = Y PI(t) (V V) I (t) PI(t) (V V) I (t) PY

n 3

1 , , -1 , , , ,-1

C2 = Y PI (t) (V V) A I (t) PI (t) A(V V) I (t) py
n 5

1 , , -1 ,
C3 = Y PI(t.) (V V) I (t) PY

n 2

1 , , -1 ,
C4 = Y PI(t) A(V V) r (t) pv

n3
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1 • • 1 ,
/ -1 ,

Cs = Y PI(t)(V V) I (t) PI( t) A(V V) I (t) PY
n4

1 , . -1 , -1 ,
Ca = Y PI(t)(V V) A (V V) A(V V) I ( t ) py

n 4

1 -1 . -1 ,
C7 - y PI(t) (V V) (V V) A(V V) I ( t ) py-

n 3

Assume that a positive root of the equation

3 2

(2C3) K + (-2C1 - 4C4 + 4C7) K + (6Cs - 3Ca) K = 4C2

exists and denote it by K•.

[
, ~* ]-1

Let 0 - I (t)PI(t)+ n K V V-

I (t) PY

, -1

[ X'Y ]13 = (X X) - X I(t) ~
0

•

•

•
then K* 6, and 0 minimizes Q(0,o,K)

The proof is
Theorem 4.
consistency.

accomplished by following the StRPS given before
Mild conditions can be imposed to show

3. SEHIPARAMETRIC MODEL IN TIME SERIES ANALYSIS

say,
time
tnodel

Suppose Y is a variable which we have
'f t , "t =1,2, ... ,T. We refer to {Yt} t=
series. It can be represented by the
given by

observed over time
1, 2, ... ,T as the'
general structural •

Yt = ~t + St + Et , t = 1, 2, ... T.

Yt is the tth observation, ~t is·the trend component, St the
seasonal component and Et the irregular component. The
dependence of the mean and variance of Yt on time is indicated

•



•
by
~t =

the trend
o.

/

component Thus, for a stationary process,
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The Autoregressive Moving Average (ARMA) .model assumes a
known parametric structure of the trend component. One
identifies the parametric structure by looking at the
correlogram of the series. In practice, we compute the
empirical correlogram and compare this to the theoretical
correlogram of known models to identify the structure of the
given data set~ In doing so, some confusion may ensue ahd
result in the incorrect identification of the underlying
parametric structure .

• Thus, to avoid the
the parametric st~ucture

seasonal component is
specification of the trend

Yt = f(t) + Et

risk of incorrect identification of
of the trend component (assuming the
0), we .propose the nonparametric
component say

(2)

where f is a smooth function of time.

To account for the seasonal effect of this type, we adopt
some dummy variables. Suppose we have a quarterly seasonal
p~riod, we use three dummy variables defined as follows:

•

X2t =

X3t =

[ 1 if t 1S a first quarter

0 otherwise

[ 1 if t is a second quarter

0 otherwise

[ 1 if t is a third quarter

0 otherwise

Model (2) now becomes

• (3)

•

Furthermore, if other variables denoted by Zt are known to
influence Y, model (3) can be written as (4)



which is clearly a semiparametric model. ~1, ~2 and ~3.are

the cOTresponding seasonal indices (relative to the fourth
quarter). We can test the significance .of the ~'s to test for
the significance of the seasonal variations.

To generaliz~ the above formulation to any length of
seasonality, simply use dummy variables numbering to one less
than the number of seasons.

The simplest form of intervention 18 the one where the
effect (structural change) in the series is a constant and
instantaneous over time (~r until th~ next int~rvention). For
instance, suppose there are 3 interventions which are expected
to induce structural change in the series. Then we define 3
intervention variables as:

[ 1 if t < T1
W1t --

0 otherwise

[ 1 if T1 $ t $ T2
W2t --

0 otherwise

[ 1 if T2 < t
W3t =

0 otherwise

Then model (4) can be modified as

Yt - fet) + 01 X1t + ~2X2t + ~3X3t + Z.k Q + ~l*Wlt + ~2*W2t-
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(5)

~1* is the structural increase in the mean of the series due
to the first intervention, ~2* is the structural change in the
mean due to the second intervention given that the first
intervention has already occured. This may also include the
cumulative effect of the first intervention. ~3* can be
interpreted similarly. However, if one suspects that the
structural . change in the slopes of the covariates and in the
seasonal indices may exist, the cross-product of W's and X's
and W's and Z's can be included in model (5).

•

•
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4. APPLICATION TO PESO-DOLLAR EXCHANGE RATE

The exchange rate f~om Oct. I, 1985 - Apr. 17, 1986 was
analyzea using the Box & Tiao approach by Ridao(1987). The
following events were assumed to affect structural change

1. The murder of Evelio Javier on Feb. II, 1986.

2. The announcement of civil disobedien~~ by Mrs. Aquino
on Feb. 17, 1986 and

3. The restoration of the writ of habeas corpus on
March 2, 1986 by President Aquino .

The following, are the intervention variables used:

A 5-day interval or equivalent to I-week of trading
,ppears to be the logical way of discretizing f. Thus, each
week is considered as one interval. A program was wri~ten in
turbo pascal implementing the two approaches discussed in
section 2. However, only the first one was used because no
covariate was included in the model. Only the intervention
variables were used in the parametric component. With = 1
the estimates of the parameters are gi~en in table 1.

•

[ 1 if Feb. 11, 1986 <t~ Feb. 17, 1986

0 otherwise

[ 1 if Feb. 17, 1986 <ts March 22, 1986

0 otherwise

[
1 if t > March 22, 1986

0 otherwise

•

•

Consider 01* = 0.8t23112. This means that the ~urder of
Mr. Javie~ influenced the decline of the peso value by an
average of about 82 cents relative to the US dollar. The
announ6ement of\civil dis-obedience by Mrs. Aquino further
triggered the decline of the peso value to an average of about
2.88 pesos relative to the US dollar. Finally, the joint
effect of the three interventions cut the fall in the peso
value induced by the first two interventions by about P 1.

To check the fit of the model to the data, the mean
squared prediction error was computed to be 0.003898703. The
standard error is 0.0622439 or the average error in estimating
the exchange rate from the model is about 6 cents .
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If one aims to use the model for forecasting purposes,
other "economic variables should also be included and the
second approach in es-timating the parameters be used.
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